Besov priors for Bayesian inverse problems
نویسندگان
چکیده
منابع مشابه
A Scalable Algorithm for Map Estimators in Bayesian Inverse Problems with Besov Priors
We present a scalable solver for approximating the maximum a posteriori (MAP) point of Bayesian inverse problems with Besov priors based on wavelet expansions with random coefficients. It is a subspace trust region interior reflective Newton conjugate gradient method for bound constrained optimization problems. The method combines the rapid locally-quadratic convergence rate properties of Newto...
متن کاملDiscretization-invariant Bayesian Inversion and Besov Space Priors
Bayesian solution of an inverse problem for indirect measurement M = AU + E is considered, where U is a function on a domain of R. Here A is a smoothing linear operator and E is Gaussian white noise. The data is a realization mk of the random variable Mk = PkAU + PkE, where Pk is a linear, finite dimensional operator related to measurement device. To allow computerized inversion, the unknown is...
متن کاملEstimating Bayesian Decision Problems with Heterogeneous Priors
In many areas of economics there is a growing interest in how expertise and preferences drive individual and group decision making under uncertainty. Increasingly, we wish to estimate such models to quantify which of these drive decision making. In this paper we propose a new channel through which we can empirically identify expertise and preference parameters by using variation in decisions ov...
متن کاملGaussian Markov Random Field Priors for Inverse Problems
In this paper, our focus is on the connections between the methods of (quadratic) regularization for inverse problems and Gaussian Markov random field (GMRF) priors for problems in spatial statistics. We begin with the most standard GMRFs defined on a uniform computational grid, which correspond to the oft-used discrete negative-Laplacian regularization matrix. Next, we present a class of GMRFs...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Inverse Problems and Imaging
سال: 2012
ISSN: 1930-8337
DOI: 10.3934/ipi.2012.6.183